Tectonics of the Himalaya and southern Tibet from two perspectives

2000 ◽  
Vol 112 (3) ◽  
pp. 324-350 ◽  
Author(s):  
K. V. Hodges
Keyword(s):  
2015 ◽  
Vol 112 (39) ◽  
pp. 12030-12035 ◽  
Author(s):  
Marissa M. Tremblay ◽  
Matthew Fox ◽  
Jennifer L. Schmidt ◽  
Alka Tripathy-Lang ◽  
Matthew M. Wielicki ◽  
...  

Exhumation of the southern Tibetan plateau margin reflects interplay between surface and lithospheric dynamics within the Himalaya–Tibet orogen. We report thermochronometric data from a 1.2-km elevation transect within granitoids of the eastern Lhasa terrane, southern Tibet, which indicate rapid exhumation exceeding 1 km/Ma from 17–16 to 12–11 Ma followed by very slow exhumation to the present. We hypothesize that these changes in exhumation occurred in response to changes in the loci and rate of rock uplift and the resulting southward shift of the main topographic and drainage divides from within the Lhasa terrane to their current positions within the Himalaya. At ∼17 Ma, steep erosive drainage networks would have flowed across the Himalaya and greater amounts of moisture would have advected into the Lhasa terrane to drive large-scale erosional exhumation. As convergence thickened and widened the Himalaya, the orographic barrier to precipitation in southern Tibet terrane would have strengthened. Previously documented midcrustal duplexing around 10 Ma generated a zone of high rock uplift within the Himalaya. We use numerical simulations as a conceptual tool to highlight how a zone of high rock uplift could have defeated transverse drainage networks, resulting in substantial drainage reorganization. When combined with a strengthening orographic barrier to precipitation, this drainage reorganization would have driven the sharp reduction in exhumation rate we observe in southern Tibet.


The Himalaya, the Karakoram and Tibet were assembled by the successive accretion to Asia of continental and arc terranes during the Mesozoic and early Tertiary. The Jinsha and Banggong Sutures in Tibet join continental terranes separated from Gondwana. Ophiolites were obducted onto the shelf of southern Tibet in the Jurassic before the formation of the Banggong Suture. The Kohistan—Ladakh Terrane contains an island arc that was accreted in the late Cretaceous on the Shyok Suture and consequently evolved into an Andean-type batholith. Further east this TransHimalayan batholith developed on the southern active margin of Tibet without the prior development of an island arc. Ophiolites were obducted onto the shelf of India in the late Cretaceous to Lower Palaeocene before the closing of Tethys and the formation of the Indus—Yarlung Zangbo Suture at about 50 Ma. Post-collisional northward indentation of India at ca.5 cm a-1 since the Eocene has redeformed this accreted terrane collage; palaeomagnetic evidence suggests this indentation has given rise to some 2000 km of intracontinental shortening. Expressions of this shortening are the uplift of mid-crustal gneisses in the Karakoram on a late-Tertiary breakback thrust, folding of Palaeogene redbeds in Tibet, south-directed thrust imbrication of the foreland and shelf of the Indian Plate, north-directed back-thrusts along the Indus Suture Zone, post-Miocene spreading and uplift of thickened Tibet, giving rise to N—S extensional faults, and strike-slip faults, which allowed eastward escape of Tibetan fault blocks.


Nature ◽  
2005 ◽  
Vol 438 (7064) ◽  
pp. 78-81 ◽  
Author(s):  
M. J. Unsworth ◽  
◽  
A. G. Jones ◽  
W. Wei ◽  
G. Marquis ◽  
...  

2019 ◽  
Vol 19 (4) ◽  
pp. 873-888 ◽  
Author(s):  
Zhonghai Wu ◽  
Patrick J. Barosh ◽  
Guanghao Ha ◽  
Xin Yao ◽  
Yongqiang Xu ◽  
...  

Abstract. The seismic effects in Nyalam, Gyirong, Tingri and Dinggye counties along the southern border of Tibet were investigated during 2–8 May 2015, a week after the great Nepal earthquake along the Main Himalaya Thrust. The intensity was VIII in the region and reached IX at two towns on the Nepal border, resulting in the destruction of 2700 buildings, seriously damaging over 40 000 others, while killing 27 people and injuring 856 in this sparsely populated region. The main geologic effects in this steep rugged region are collapses, landslides, rockfalls, and ground fissures, many of which are reactivations of older land slips. These did great damage to the buildings, roads, and bridges in the region. Most of the effects are along four incised valleys which are controlled by N-trending rifts and contain rivers that pass through the Himalaya Mountains and flow into Nepal; at least two of the larger aftershocks occurred along the normal faults. And, the damage is not related to the faulting of N-trending rifts but rather is distributed along the intensity of Nepal earthquake. Areas weakened by the earthquake pose post-seismic hazards. Another main characteristic of damage is the recurrence of the old landslide and rockfalls. In addition, there is an increased seismic hazard along active N-trending grabens in southern Tibet due to the shift in stress resulting from the thrust movement that caused the Nepal earthquake. NW-trending right-lateral strike-slip faults also may be susceptible to movement. The results of the findings are incorporated in some principle recommendations for the repair and reconstruction after the earthquake.


Four major plutonic belts are related to the Meso-Cainozoic orogenic evolution of the Himalaya—Transhimalaya—Karakoram realm: the Transhimalaya belt and its satellite Kohistan arc, the Karakoram batholith, the High Himalaya belt and the North Himalaya belt. A fifth one results from the lower Palaeozoic epirogenic events: the ‘Lesser Himalaya’ belt. The tectonic settings of their production and emplacement are successively reviewed. Among the first four, two result from oceanic subduction along an Andean margin locally branching into an island arc and two result from intracontinental subduction after closure of the oceanic realm. Both Andean belts are made up of very large quantities of highly diversified granitoids produced more or less continuously during 70 Ma at least, whereas the intracontinental ones are limited to a small volume of very uniform anatectic granite produced during a 10—15 Ma period. The production and emplacement in the Andean belts is partly controlled by the obliquity of the convergence between India and Eurasia. The emplacement of the intracontinental belts is even more dependent on the regional tectonic setting. These contrasting belts are case studies probing the depths and mechanisms of their production and giving adequate models for older geodynamic frames.


2018 ◽  
Author(s):  
Zhonghai Wu ◽  
Patrick J. Barosh ◽  
Xin Yao ◽  
Yongqiang Xu

Abstract. The seismic effects in Nyalam, Gyirong, Tingri and Dinggye counties along the southern border of Tibet were investigated during 2–8 May, 2015, a week after the great Nepal earthquake along the Main Himalaya Thrust. The intensity was VIII in the region and reached IX at two towns on the Nepal border; resulting in the destruction of 2700 buildings, seriously damaging over 40 000 others, while killing 27 people and injuring 856 in this sparsely populated region. The main geologic effects in this steep rugged region are collapses, landslides, rockfalls, and ground fissures; many of which are reactivations of older land slips. These did great damage to the buildings, roads and bridges in the region. Most of the effects are along four incised valleys which are controlled by N–S trending rifts and contain rivers that pass through the Himalaya Mountains and flow into Nepal; at least two of the larger aftershocks occurred along the normal faults. Areas weakened by the earthquake pose post-seismic hazards. Three valleys have the potential for dangerous post-seismic debris flows that could create dangerous dams especially during the monsoon season. Loosened rock and older slides also may fail. In addition, there is an increased seismic hazard along active N–S trending grabens in southern Tibet due to the shift in stress resulting from the thrust movement that caused the Nepal earthquake. NW trending right-lateral strike-slip faults also may be susceptible to movement. The results of the findings are incorporated in some principle recommendations for the repair and reconstruction after the earthquake.


Author(s):  
Mike Searle

To understand how the Himalaya were formed it seemed logical to start at the actual zone of plate collision, the Indus suture zone. Most of this collision zone runs across southern Tibet, which in the 1970s was almost impossible to travel through. Following Mao Tse-tung’s Red Army’s invasion and occupation of Tibet in October 1950, that region had remained firmly closed to all foreigners. In the western Himalaya the Indus suture zone runs right across the northernmost province of Ladakh. Ladakh used to be a part of southwestern Tibet before the British annexed it during the Raj. Leh, the ancient capital of Ladakh at 3,500 metres in the Indus Valley, was the final outpost of British India before the great trans-Himalayan barrier of the Karakoram Range. Only the Nubra Valley and the Tangtse Valley north of Leh were beyond the Indus, and these valleys led directly up to the desolate high plateau of Tibet. Leh was a major caravan route and a crossroads of high Asia, with double-humped dromedary camel caravans coming south from the Silk Route towns of Yarkhand and Khotan; Kashmiris and Baltis came from the west and Indian traders from the Hindu regions of Himachal and Chamba to the south. Ladakh, Zanskar, and Zangla were three ancient Himalayan kingdoms ruled by a Giapo, or King, each from a palace that resembled a small version of the Potala Palace in Lhasa. In 1978, when we were climbing in the mountains of Kulu, I had looked from our high summits across to the desert mountains of Lahoul and Zanskar, north of the main Himalayan watershed. Here, in the ancient Buddhist kingdoms of Zanskar and Ladakh lay wave upon wave of unexplored and unclimbed mountains. They lay north of the monsoon limits and in the rain shadow of the main Himalaya, so the vegetation was sparse, and the geology was laid bare. Flying north from Delhi, or east from Kashmir into Leh, the views were simply mesmerizing.


2019 ◽  
Vol 483 (1) ◽  
pp. 401-422 ◽  
Author(s):  
Micah J. Jessup ◽  
Jackie M. Langille ◽  
Timothy F. Diedesch ◽  
John M. Cottle

AbstractGneiss domes in the Himalaya and southern Tibet record processes of crustal thickening, metamorphism, melting, deformation and exhumation during the convergence between the Indian and Eurasian plates. We review two types of gneiss domes: North Himalayan gneiss domes (NHGD) and later domes formed by orogen-parallel extension. Located in the southern Tibetan Plateau, the NHGD are cored by granite and gneiss, and mantled by the Tethyan sedimentary sequence. The footwall of these were extruded southwards from beneath the Tibetan Plateau and subsequently warped into a domal shape. The second class of domes were formed during displacement on normal-sense shear zones and detachments that accommodated orogen-parallel extension during the Late Miocene. In some cases, formation of these domes involved an early stage of southwards-directed extrusion prior to doming. We review evidence for orogen-parallel extension to provide context for the formation of these gneiss domes. Compilations of pressure–temperature–time–deformation data and temperature–time paths indicate differences between dome types, and we accordingly propose new terminology. Type 1 domes are characterized by doming as an artefact of post-high-temperature exhumation processes in the Middle Miocene. Type 2 domes formed in response to exhumation during orogen-parallel extension in the Late Miocene that potentially post-dates south-directed extrusion.


Sign in / Sign up

Export Citation Format

Share Document